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Outline

> Motivation and Definitions

> PhotoHeads

> 4D Photoheads

> SynFin Example and Issues
> Other Uses
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Goals of Evaluation

> Show a particular system
implementation meets requirements

> Show a particular system continues to
operate as designed/tested

> Evaluate alternative system
components

> Support research/design of new
algorithm/sensor/system

> Understand the underlying “science”
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Experimental Design

If your experiment needs statistics,
then you ought to have done a better
experiment.

Lord Ernest Rutherford (1871- 1937) English physicist.

Nobel prize for chemistry 1908. As quoted in N.Bailey. The
Mathematical Approach to Biology and Medicine, Wiley, 1967.

In Reality: Every experiment proves
something. If it doesn't prove what you
wanted it to prove, it proves something
else. What is proves always depends on
“statistics” whether you admit or not!
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Experimental Design

Controlled Experiment (Hard science)
> Vary 1 or a few elements, hold all else constant.

Controlled Experiment (Social Science)

> Experiment where variable in question is varied
between the test group and “control” group, with other
variables balanced or randomized (e.g. RCT)

Natural Experiment

> Measurements from naturally occurring data, |.e.
without formal controls group.

The greater the uncontrolled variation, the

more data needed to reach a statistically

relevant conclusion.

Control €=> POWER
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CMU PIE
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The CMU Pose, Illumination, and Expression (PIE) Database
Terence Sim, Simon Baker, and Maan Bsat

il-' Proc of the IEEE Int. Conf. on Automatic Face and Gesture Recognition, May, 2002.
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PIE Controlled Pose, Lighting
[llumination

w.A3IND3S Jo 90UaIDS Y| (@SOLIND3g ooz MUS

=
o
-]
=

=z
7]
&
@
]
o
N
]
=
°

Derived From CMU PIE. Not for redistribution
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Why (Semi-)Synthetic Evaluation

> Same say it is for more data, to build
large datasets (at lower cost)
> But this is limited by errors in “modeling”

> Maybe more important reason:
> More experimental control!
> Explore more conditions

> Less Obvious: testing assumptions
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The “synthetic data” space

Physics-based
Synthetic

Scientific

Control and
Support for
conclusions

Guided-
Synthetic

Controlled
Data
Collection
Large scale
Challenge
Problems

Ideal

Experiment

In situ
experiments
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Small Lab
samples “validation”
Relation to “real problem”
Definitions

> Synthetic (Pure Synthetic)

> Driven by an (un-validated) generation model

> Modeled Synthetic

> Driven by a generation model using parameters

derived from and validated to real data.

> Guided Synthetic

> Synthetic data where each sample is tied to real data.

> Semi-Synthetic

> Real data mixed with artificial “sampling”

> Controlled Data Collection

> Real data collected with controls on collection

making it a Synthetic “Scenario/Operation”

NIST IBPC 2010
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Example “guided synthetic” vs real

Animetrics FaceGen | )

Issue: how much do we consider
regions outside ROI?
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Our Goals

> Move to more and more and more
automated/controlled/repeatable
experiments.

> Build range of pure/guided/semi-synthetic
> Integrate with real system components

(e.g. Real sensors, commercial algorithms,
control/capture systems such as MBark)

) >~ Domains long-range maritime biometric
1 “evaluation”, multi-sensor multi-biometric
fusion, adaptive fusion systems..
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Synthetic “Evaluation” Validation

> Weak

> Look at match/non-match distribution
> Replicate known experiment on models as
both probe and gallery?
> Increasing Levels of Validation/Testing:
> Self-Image matching on ScreenShot

> Replicate an known experiment on Screen-
Captures using real gallery and synthetic

probes.

> Self-image matching based on Sensor Capture

> Replicate an known experiment on Sensor-
Captures using real gallery and synthetic

probes.

Cooperative Face
« Controlled pose
* Controlled position

* Controlled lighting

Non-Cooperative Face

* No control over subject
* Outdoors?

* Nighttime?

NIST IBPC 2010
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Early Photo-head Data Acquisition

Sensor : FOV 0.5° and 0.25° imaging (equivalent to 1600mm and

3200mm focal lengths ).
Inter-pupil distance in resulting images is approx 120 pixels
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Photohead Elements

> Head/Face Models

> Imaging/Capture Systems

> Motion Models

> Lighting Models

> Display System (Not “real” system

element)

NIST IBPC 2010
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Example Early Photo-heads

2891

S1 Galléry

:32 PM, Sensor CO0, (Original Images S1)
(C0,S1) Probe Set
[ L1

x —
March 2 12:32 PM, Sensor C1, (Original Images S1)
(C1,S1) Probe Set

March 2 12:32 PM, Sensor C0, (Original Images S2)

(C0,S2) Probe Set

L IR

March 2 12:32 PM, Sensor C1, (Original Images S2)
(C1,S2) Probe Set

Examples Lessons with
Early Photo-heads

Variation over the day

0.9

Image 1 - Far Camera Clear w/Wind 0-10 MPH
Self Matching

(2]
5 //(MQ Twilight
07 —*— Afternoon
—— Evening Tw ilight
—=— Evening
Morning
0.6 —=7 T i 1
0 5 10 15 20
Rank

*feading commercial-atgorithm
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Impact of Weather
Weather

All Weather Conditions wimage#1 Gallery | oo/ All Weather iti ge#1 Gallery .
Wind 5-10 MPH LhiSnow-1 ind 510 MPH | - tensees .
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Clear Rain
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Early Photoheads results
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> Papers on Statistical Evaluation of
System

> Lead to some non-obvious results

> Multiple papers on Quality and System
Failure Prediction

> Performance enhancement via
perturbations
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Sensor System issues

> As if (unconstrained) face
wasn’t difficult enough...

> Choice of sensor has a huge
impact on performance
PTZ
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> Lighting — Depth of Field
> Resolution — Motion Blur
> Field of View
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Example “Dark Photo-heads”
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Subset of CMUPIE, FERET data set re-imaged in a
controlled, dark, indoor “photo-head” setting.
At Univ we have a 100m indoor “Dark room”
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Qualitative Results

Securics Detector

A Leading Commercial
Detector

Evaluating a lowlight detector

New detector vs. leading commercial detector

Detection (%)

Detection (%)

1

0.8 [

0.6

0.4

0.2

Correlation Filter Detector, Left Eye Detection vs. Leading Commericial Detector

T
KooK *
* -
¥
#
i — .
el
,,,,,, ——
¥
. MACE Filter Detector ——
y AACE_ Filter Detector ---%--
- J J Leading Commercial
5 10 15 20

Tolerance (pixel)
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Motion Artifacts

Typical motion blur
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(~0.4 lux, yielding face lumens of 0.115 nits)
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* Images taken approximately 100M from the EMCCD
camera at dusk
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* Top of the walking stride produces minimal blur
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Other Artifacts

Obvious rolling
- Affects Most/All CMOS sensors shutter artifacts

* Even with a short integration time, the shutter is
capturing data at different times for the top and bottom of
the images
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4D Photoheads
Animetrics Modeling

-
Securics'

Securics®: The science of security™

e2010  Securics®: The science of security
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Ongoing “validation” results

> FaceGen (Guided-synthetic):

> Only 80-90% self-matching-screen used to
build them! Only 46% on real test.

> Animetrics (Guided-synthetic):

> 100% self-matching on multiple research and
commercial recognition.

> Replicated Frontal “PIE” results on real
collected 4D Photoheads at 100m,200m

> Working on full Guided-synthetic PIE
> Next Steps
> Working on larger datasets.
> Moving Platforms
> Facial Surgery/Ageing/Weight Modeling
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Other Uses

()
1)
(2)
c
=k
(2)
1)
2
—
=2
o
1Y)
2}
1)
=}
(2)
o
o
=h
1%2)
1)
(2)
c
=k
=
=l
=

ynog "L
0102 048l LSIN

How SFinGe works

Shape Class and

parameters singularities
Fingerprint Directional map

shape model model

Average
density

Density map
model
FLngerprint \ zlgecnonal Density
shape P map

' 2\ Ridge pattern Initial
generation seeds
— \ Contact

Master-fingerprint .

region
’Position

Singularities

Level

- Erosion «
Dilation

AFingerpr
image

Background Translation Noising &
generator \«1 rotation \« rendering \-

Skin deforma-
tion model

Deformation.
parameters

Background type ' ' Noise '
and noise level dx,dy.6 probability

'

In our view one of the best “synthetic” fingerprint systems. See R. Cappelli, D. Maio and D.

Maltoni, "Synthetic Fingerprint-Database Generation", in Proc. International Conference on

Pattern Recognition (ICPR2002), Quebec City, August 2002.
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How to validate the model?

> Can human'’s identify the synthetics?

About 90 people (many of them having a good background in
fingerprint analysis) have been asked to find a synthetic fingerprint
image among 4 images (3 of which were real fingerprints).

The synthetic image proved to be not distinguishable from the others
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Fig. 18.25. Algorithms PAO2 and PA24: impostor/genuine distribution and FMR/FNMR graph, for the four databases used in FVC2002.
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They conclude it is “valid”
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> They reasonably conclude it is about the
same and real data and hence usable for
testing. And for some testing it is!

> But biometric system performance and
errors live in the per-match tails of
distribution.

> Don'’t forget Weyman'’s talk this morning..
Everything in “experiment” matters
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Actual Performance Differences

0L0Z®

> FVC2004 real vs synthetic (DB4)
> Looking at top 10 DB4 performers?
Absolute Difference in Rank with DB1 is 7 positions!

> Consider Relative Performance with Best Alg
RERR_D = (AlgErr_D-BestErr_D)/BestErr_D)

> Average Percentage Change in Relative ERR
%CERR=(RERR_4-RERR_1)RERR_4 = 323%

> Average % change in Relative FMR100 = 156%

> Average % change in Relative FMR1000=153%

> For DB2 % R Changes were 74%, 186% 141%
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Performance Differences vary

> FVC2004 is the “most” different as the “real” data
had instructions to distort fingerprint. (It is one
reason to normalize scores not use raw error rates)

> FVC2002 and FVC2006 are both closer (but still
show differences between SFinGe and real data)

> FCV2002 DB1 vs DB4 has the following differences
> Average change in absolute Range 2.7
> Average Percentage Change in Relative ERR
%CERR=(RERR_4-RERR_1)RERR_4 = 159%
> Average % change in Relative FMR100 = 57%
> Average % change in Relative FMR1000=157%
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Synthetic Fingerprint Issues

> Can we really conclude synthetic
performance is the same?

> What is distribution of parameters
> Type, minutia, ridge, orientation,

pressure, moisture, system noise

> \What biases are the models
introducing?
> Algorithms will tuned to these!
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Other Uses of Semi-Synthetic

> Testing Assumptions (Micheals-Boult-
08)

> Ongoing System “Revalidation”

> Validation of “algorithm” change

> Validation on component change
> Sensors

> Lenses
> Bandwidth/Performance/compression...

> Hypothesized Variations (surgery,
I ageing, etc.)
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Conclusions

> Defined different levels of “synthetic” data

> Experience has taught us LOTS of things
can, and will, go wrong,
go wrong,
go wrong, ...
as you try to build (semi) Synthetic
biometric evaluations.

> Semi-synthetic data offers experimental
processes that can lead to new insights
and, we believe, eventually better
evaluations.
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